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Abstract .  A computationally inexpensive energy correction is suggested for rad- 
icals described by the equation-of-motion coupled cluster method for ionized states 
in the singles and doubles approximation (EOMIP-CCSD). The approach is 
primarily intended for doublet states that are qualitatively described by Koop- 
mans' approximation. Following a strategy similar to those used in multireference 
coupled cluster theory, the proposed correction accounts for all correlation effects 
through third order in perturbation theory and also includes selected contributions 
to higher-order energies. As an initial test of the numerical performance of the 
method, total energies and energy splittings are calculated for some small proto- 
type radicals. 

Key words: Energy correction - Doublet radicals - Singles approximation - 
Doubles approximation 

1 Introduct ion 

Theoretical studies of open-shell molecular systems are often difficult due to the 
relatively high density of electronic states characteristic of these species. Unlike 
closed-shell molecules, the ground state is frequently separated from the lowest 
lying excited states by an electron volt or less in radicals. Small energy differences 
can lead to relatively strong pseudo-Jahn-Teller interactions [1], which affect the 
character of both ground- and excited-state potential energy surfaces along direc- 
tions corresponding to nuclear displacements of appropriate symmetry. A reliable 
treatment of such systems requires a balanced description of two or more zeroth- 
order basis functions that correspond to the interacting electronic states [2]. 
Traditional treatments of electron correlation in which the wavefunction is gener- 
ated by perturbation expansion with respect to a single Slater determinant are 
severely challenged, since one of the "important" zeroth-order determinants is 
necessarily treated differently than the others. Methods based on multideterminant 
reference functions have long been advocated for and successfully used for systems 
of this type [3], but are suitable only for accurate study of small molecules due to 
unfavorable computational scaling characteristics. 

For doublet states, one alternative method that offers both a balanced treat- 
ment and geometric (as opposed to factorial) computational scaling is the 
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equation-of-motion coupled cluster method for ionized states in the singles and 
doubles approximation (EOMIP-CCSD) [4-6]. In this approach, the electronic 
Hamiltonian is subjected to a similarity transformation based on wavefunction 
parameters for some n electron reference state, projected onto a particular basis of 
n-1 electron determinants, and diagonalized. For cases involving strong pseudo- 
Jahn-Teller effects, potential energy surfaces calculated by the EOMIP-CCSD 
procedure appear to be uniformly superior to those obtained with the coupled- 
cluster singles and doubles (CCSD) [7] method [5, 8]. The great promise of the 
method for these challenging problems led to the formulation and implementation 
of an analytic gradient strategy for both EOMIP-CCSD [5] and a simplified but 
related theory that uses an approximate form of the transformed Hamiltonian [9]. 

While EOMIP-CCSD provides results that are often superior to those obtained 
in CCSD calculations (especially for cases involving quasidegenerate states), a for- 
mal argument can be made on behalf of the latter. From the point of view of 
perturbation theory, CCSD is exact through third order, while EOMIP-CCSD 
neglects some terms that appear at this level when Koopman's approximation is 
used to define a zeroth-order basis [10, 11]. Therefore, CCSD is the preferred 
choice when a single determinant dominates the form of the exact wavefunction 
and the perturbation series is well-behaved, exhibiting relatively rapid conver- 
gence. EOMIP-CCSD is most useful when strong configuration mixing is involved 
since arguments based on perturbation theory are of questionable validity in these 
situations, and the balanced nature of the method is clearly more important. 

The purpose of the present paper is to present a simple approach for including 
the "missing" third-order terms in EOMIP-CCSD and to document some prelimi- 
nary results obtained with the resulting approximation. The modified method can 
be expected to be accurate for a range of problems that exceeds that adequately 
treated by CCSD. For "single reference" cases, the proposed corrected EOMIP- 
CCSD method should be comparable in accuracy to CCSD calculations based 
on restricted or unrestricted open-shell reference functions; the latter methods are 
undoubtedly inferior for more difficult cases since the balanced nature of the 
EOMIP-CCSD approach is not compromised by the additional energy correction. 

It should be pointed out that the work presented here is not the first to address 
the question of higher-order corrections to EOMIP-CCSD. Nooijen has con- 
sidered these effects in the calculation of ground state properties by means of a sum 
over right and left-hand wavefunctions for n-1 electron intermediate states, and has 
carried out a formal analysis of how a balanced description of the reference and 
final states (and hence, reliable ionization potentials) can be obtained when one 
goes beyond the CCSD approximation [11]. In addition, there have been recom- 
mendations for noniterative corrections to ionization potentials calculated by 
the Fock space multireference coupled cluster theory in the singles and doubles 
approximation (FSMRCCSD) [12], a method that is equivalent (although for- 
mulated in an entirely different way) to EOMIP-CCSD. Both Pal et al. [10] and 
Haque and Kaldor [13] have presented formulas that are correct through third 
order in perturbation theory, with the former also suggesting a modification that 
includes some higher-order effects. These works employ the language of model 
spaces and the derivations are less straightforward than that presented in the next 
section, but the effects included are (necessarily) the same as those summed in our 
approach through third order with only modest differences in higher orders. Our 
work should therefore be viewed as simply another approach for improving the 
description of n-1 electron final states rather than a pioneering effort in this 
direction. 
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The next section details the theoretical and practical considerations that have 
led to our particular choice of a noniterative correction. This is followed by a 
presentation and discussion of preliminary results obtained with the proposed 
approach and some comments on future directions for research in this area. 

2 Theory 

The framework for our treatment of corrections to EOMIP-CCSD final state 
energies is the matrix partitioning approach of LSwdin [14]. In this formalism, 
the set of basis functions h used in the matrix representation of an operator A is 
subdivided into an "important" part p and a "less important" part q (h = p w q). 
Taking A to be a general (not necessarily Hermitian) operator, the eigenvalue 
conditions can be written as 

and 

A,,A,q IAoAqql[::l: I :l 
A,,A,q 

[~c~p 5Pq] I A~,Aqq J = [5~p ~q] 2, (2) 

respectively, where ~2p(~) and ~2q(~q°q) represent the projections of the right (left) 
eigenvector onto the p and q spaces. From Eq. (1), it is easily shown that 

2 ,  = [2 - Aq~] -1A,, ~ , ,  (3) 

which can be used to express 2 as the eigenvalue of an (eigenvalue-dependent) 
effective operator whose matrix representation has the same dimension as the basis 
function subset p, viz., 

Aeff~t, ~ {AI, p + Apq[2 - Aqq]- iA~}  ~p = 2 ~ .  (4) 

Despite the smaller dimension of the effective matrix, the eigenvalue problem 
remains computationally demanding due to the need to evaluate the matrix inverse 
as well as the iterative solution necessitated by the form of the equation above. 
However, if A is separated into a "zeroth-order" part and a perturbation, Eq. (4) 
can be used to derive the equations of order-by-order Rayleigh-SchrSdinger 
perturbation theory. 

In the present research, our interest focuses on corrections to eigenvalues of the 
CCSD similarity-transformed Hamiltonian,/~, which is defined by 

/~ -= exp ( -  T ) H  exp(T). (5) 

Here, T comprises the standard one- and two-electron cluster operators associated 
with CCSD [-7]. The amplitudes of T serve to parametrize the CCSD wavefunction 
of some appropriately chosen n electron state in terms of a Slater determinant 
reference function 10). In EOMIP-CCSD [4, 5], the/-I operator is projected onto 
a basis of n-1 electron Slater determinants consisting of those obtained by remov- 
ing one electron from r0) (Koopmans, or h determinants), and those generated 
from them by promotion of one of the remaining electrons to an orbital that is 
unoccupied in 10) (2hp determinants). Some care must be exercised in developing 
a perturbation theory involving /~, as this operator differs fundamentally in 
character from the untransformed electronic Hamiltonian [15]. Specifically, 
H contains three-electron and higher-rank components and is not Hermitian. 
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Moreover, when the occupied-occupied and virtual-virtual projections of the 
Fock operator are assigned to zeroth order, with all other parts of H constituting 
the perturbation,/7 also contains terms that are second and higher-order in the 
correlation perturbation [16]. 

Multiplying both sides of Eq. (4) by ~p (the projection of the exact left 
eigenvector onto thep basis) and integrating the resulting expression over all space 
yields 

<~Qfpl/Teffl~p> ~ <.~°pl {/Tpp -4-/Tpq[2 -/Tqq]-l/Tqp} i.~p > _- 2 <~°p[~p> , (6) 

when the partitioning approach is applied to the case that A =/7 .  If the exact 
eigenvalue 2 is written as 2o + A2, where 20 is some (as yet unspecified) zeroth- 
order approximation, and /7 is expanded in terms of order in the correlation 
perturbation as done in Ref. [9], 

/7 ---- B [°1 "4-/7111 A-/7[2] -4-/7t31 -t" " " ,  (7) 

the operator inverse appearing in Eq. (6) can be written as 

[ 2 - -  / T q q ' ] - i  = [ 2  0 ..~ A 2 - -  / ~ [ 0 ] _ _  /.~[1] /.~[2] . . .  ] - 1  . . q q  - q q  - _ _ ~ q  - ( 8 )  

= [(20 - Rtol~ (1 - [20 - Rt°Ja- l r r2m ,~[21 A23)3-1 ~.qq ! .~qq j k ~ q q  "q- fflqq dr . . . .  

(9) 

=- [ (20 - --~tTt°l~, (1 - [2o  - __q,nE°11-1J I v , ,  - A 2 3 ) 3 - ' ,  (10) 

which has the series representation 

_ ~ [oi- i  - i [ 2  - -  /Tqq]  -- I = [ 2 0  - -  "~qq~'~[OJ']J -- 1 .4. [ 2 0  - -  -'qq]q[01"].l -- 1 (Vqq 5 2 )  [ 2 0  - -  . . q q  ..i 

+ [20  _ ::~nt°ll-~ (vq~ - A2)  [20 - _ , q  j 

X ( V q q  - -  A2) (20 - ;_~tolq- 1 + ... (11) ~- qq ..t 

Whenp = 10> and /7  = H, the series above can be used as a basis for deriving the 
standard equations of many-body perturbation theory. 

To derive an approximate correction to the EOMIP-CCSD energy, it is natural 
to define p as hu2hp.  20 can then be taken as the EOMIP-CCSD energy 
<~e~°/ I /7~  I . ~ ° ) > ,  where 5e(p °/and .¢~(po1 are the vectors that diagonalize thep projec- 
tion of/7. It should be noted that 5e~ °) and ~(v °1 are neither necessarily equal nor 
proportional to the exact 5ep and ~p vectors. The latter can however be written as 

~(21 + ~(31 + ... (12) ~ p  = ~ ( o 1  + ~ p  ~ r  , 

= (~(2) + of(3) + (13) ~e, ~ ( / 1 + _ ,  - ~  . . . ,  

where the correction terms may be obtained by the usual methods of perturbation 
theory when the entire/Tj,p is taken as zeroth order. Note that "order" as applied to 
the eigenvectors has a somewhat different meaning that its use in classifying 
contributions to //; superscripts are accordingly enclosed in parentheses rather 
than square brackets to emphasize the distinction. Specifically, Y/(p") and 2~o~,) 
contain corrections that are nth order and higher in the correlation perturbation as 
defined by a zeroth-order basis predicated on Koopmans' approximation. There- 
fore, if the sum of the superscripts of Nt~l ~ , )  and &a~o) is termed the "overall 
order", it should be recognized that the corresponding terms include m + n + o and 
higher-order corrections to the zeroth-order description provided by Koopmans'  
approximation. By writing the eigenvalue correction A2 as an expansion in this 
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"overall order" 

A2 = A21 + A2z + ..., (14) 

inserting the expansions for 5ep, ~p and A2 into Eqs. (6) and (11), doing some 
algebra and collecting terms of a given "overall order", one finds that 

A21 = 0, (15) 

/ 64~'(0) T_~[1] [ 2  0 / . ~ [ 0 ] ] - - 1  r711] N(po)>, (16) 

A23 = < [ 2 0  - - '  + < [ 2 0  - 

/ ~ ( o ) i  ~Tm r :  Dm~-I - I  rTm [20 - ~ r ° l l - I  zTml~(v°)>. (17) -~  \~e~ p i X.tpq I~,;O - -  - - q q  .j . = q q  ==qq j **qp  

The cigenvcctor correction terms [Eqs. (12) and (13)] contribute only to A24 and 
terms of higher "overall order". Eqs. (15)-(17) include the terms that must be 
considered if the resulting energy is to contain all third-order corrections to 
Koopmans' approximation. Of course, selected higher-order contributions are 
included as well by virtue of how ~o)  and Aa<v°) are defined. If attention is restricted 
to states that lie mainly in the space spanned by the h determinants, then elements 
of the eigenvector that link [0> to them contain contributions that are zeroth-order 
and higher in the correlation perturbation, while those that connect [0> to the 2hp 
determinants are first- and higher-order quantities. 

At this point, it is appropriate to dissect each of the terms in Eqs. (15)-(17) and 
determine the overall order in the correlation perturbation at which they first 
contribute. The task is considerably simplified by a preliminary analysis of the 
~iz~¢~(o)~ product that appears in all but one of the terms. For the zcroth-order qp I ~ p  / 

part of ~o)  (the projection of the eigenvector onto the h determinants), this 
vanishes s i n c e / ~  necessarily must then produce a pure two-particle excitation. 
Matrix elements of this type [(R~)ma*ib*j] vanish, as demonstrated in Ref. [9]. 
Therefore, nonzero contributions to this product come solely from the 2hp projec- 
tion of the eigenvector and are therefore second and higher order in correlation. 
The product <5g(p°)lDm found on the left side of three terms has a somewhat - - p q  

different character. Unlike the pure excitation part of/7 m, the pure two-particle 
deexcitation part does not vanish (the relevant matrix elements are simply equal to 
those of the untransformed electronic Hamiltonian), so that (Aa,(°)[ r7 m contains ~ p q  

first- and higher-order contributions. Identifying the lowest contributing order in 
correlation for <Sg(p°)lDm and rTm ~<o),~ allows one to immediately see that A2z ~ p q  ~ q p  ~ p  / 

contributes at third and higher orders, while the same is true for the second term of 
A23. However, the other terms of Eq. (17) clearly have no third-order component 
and will be ignored in the following. Therefore, the energy given by 

E = + - 20 + [ 2 0  - + (18 )  
CCSD 

contains all contributions through third order in the correlation perturbation, 
based on a zeroth-order basis defined by Koopmans' approximation. 

All but one of the contributions to the noniterative energy correction AE 
involves intermediate states that belong to the set of 3h2p determinants (those 
obtained from the h determinants by excitation of two electrons). The correspond- 
ing spin-orbital formula [17] is 

1 s~ ,u~ ,~ [20 + f .  +f~  +A~ - f ~  - f ~ ] ,  (19) AE ~ -~i b l a b r i j k  
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l i f t  and ab where the fp~ are diagonal elements of the Fock matrix. The ,,b rij k ampli- 
tudes are defined by 

llaJb k = P(ijk)lk(ab 1] ij) - P(ijk) ~, l~J(ab l[ ek ) - P(ab) P(ijk) 2..x" i m k . i  ~, ~ I1 mb>, (20) 

~b P(ijk) y 'rej(abl lek)  P(ab) P(ijk) Y r~ ( i j l lmb)  r i j k  ~ - -  

e i11 

- P(ab) P(i]k) ~ r~t,?(mb tl ke> + P(kji) ~ rmt~(rnn [I kj)  
rll~ mn 

- ' ( i j k ) ~ r ~ , k f P ( i j ) ~ t ~ ( m n l l e i > l + P ( i j k ' P ( a b )  

x ~ r~ktf f(ma II el).  (21) 
r e e f  

In Eqs. (2..0) and (21), the (pq I[ rs ) are antisymmetrized two-electron integrals; ri (l i) 
and r~ (l~ J) are amplitudes of the EOMIP-CCSD eigenvectors 

and 

~ ,  =-- ~ rii + 1 ~,, rfjati j 
• 2 ia j  

(22) 

spin-orbital expression 

1 
AE ~ i44 E 

i jk labc 

where 

l ijkl abc r~ ~bcrijttLao + f i  +fjj  +fkk +f , - - f~a  --fbb --tic-I, (27) 

liJkl = p(ijkl)P(abc)l~J @l [I bc>, (28) abc 

~bc P(kl)P(ijkl)P(bc)P(abc) ~ r~mtff <mb IIke> r i j k l  

rile 

-- P(il)P(iIkj)P(cab) ~, c ~b r,mtin (mn ]J kj>, (29) 
lgtn 

1 
s 5  - Z t'i* + - Z  12aj*it. (23) 

i 2 i a j  

The permutation operators P_(pq) and P(pqr) are defined by their action on 
arbitrary two- and three-index quantities 

P(pq)Z(pq) = Z(pq) - Z(qp) (24) 

and 

P(pqr)Z(pqr) = Z(pqr) + Z(qrp) + Z(rpq), (25) 
ab while the t~j amplitudes are understood to be those that serve as the first-order 

correction to the n electron wavefunction 

ab = (ab [] ij ) (26) 
tij fit + ~j --La -- fbb" 

The remaining contribution involving 4h3p intermediate states corresponds to the 
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and an additional permutation operator defined by 

P(pqrs)Z(pqrs) = Z(pqrs) + Z(rqsp) + Z(sqpr) + Z(prsq) + Z(psqr) + Z(rspq) 

(30) 

has been introduced. 
At this point, a number of different strategies could be followed, and none of 

these can be regarded as rigorously justified by any criteria. The presence of 
infinite-order contributions in L#(f ) and Nip °) confounds any attempt to isolate 
terms that contribute only to a given order, and there is no unambiguously "best" 
choice of a noniterative correction. The strategy that we have adopted is described 
below, along with practical and theoretical considerations and a discussion of its 
relationship to corrections previously formulated for FSMRCCSD calculations 

1) The term involving 4h3p intermediates is omitted. For the states of principal 
interest here (those dominated by the h determinants), this makes a fifth-order 
contribution which is expected to be negligible. Moreover, it is computationally 

abc undesirable as evaluation of the rljkt amplitudes involves steps that scale with the 
eighth power of the system size. None of the proposed FSMRCCSD corrections 
[10, 13] include this term. 

2) All terms in Eqs. (19)-(21) are evaluated. Rather than using the first-order 
T amplitudes, we follow the lead of Refs. [13, 10] by evaluating all contributions 
with the converged T amplitudes. It should also be noted that noniterative 
corrections to the ground-state CCSD energy (for which there is a vast literature 
[18]) are also based on converged rather than first-order amplitudes [19]. To some 
degree, use of the converged amplitudes tends to offset the misbalanced nature of 
a correction based on some wavefunction parameters (the ~(v °) and _pq'(°) ampli- 
tudes) that contain infinite-order contributions and others (T) that are truncated at 
first order. 

3) The major distinction between effects treated by the proposed correction 
and related methods developed for FSMRCCSD theory [10, 13] are the (fourth- 
order) contributions that arise by including the last two terms of Eq. (20). It should 
be noted that these can be dropped without compromising the objective of 
including all corrections through third order (contributions to the r~'~k are second- 
order and higher). However, numerical experimentation performed in the course of 
this research has shown that they make an important contribution to final state 
energies that is beneficial in essentially all cases. Since evaluation of the second- 
order contribution to c,°(°)rTtll does not significantly increase the cost of the ~ p  ~ p q  

calculation, retention of this term is desirable. 
4) In the FSMRCCSD + T*(3) method formulated by Pal et al. [10], integrals 

and binary products of integrals and T amplitudes in the equations are replaced 
by the corresponding matrix elements of the full/7 operator. In our approach, 
equations for specific truncations of/7 are obtained, and then evaluated with the 
converged T amplitudes. The former strategy does indeed account for more 
higher-order effects and seems to provide somewhat better final-state energies [20]. 
Nevertheless, our interest is in properties and potential energy surfaces of n-1 
electron final states, and it is well-recognized that efficient analytic evaluation of 
energy derivatives is essential for any method used for studies of this type. This 
consideration is raised here because use of the/7 matrix elements would complicate 
(and increase the cost of) gradient evaluation. In our opinion, this objection far 
outweighs the modest improvement in accuracy achieved. 
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5) The evaluation of rij kab and ,abliJk amplitudes involves computational steps with 
at most a sixth-power dependence on the basis set size d .  While this scaling 
behavior is the same as that of rate-limiting steps in the reference state CCSD 
calculation, two factors suggest that the cost of evaluating the noniterative correc- 
tion will make only a small contribution to that of the total calculation. First, 
unlike the JV 6 steps encountered in CCSD calculations (which must be performed 

a b I i j k  in each iteration), the rlj k and ,ab amplitudes need to be evaluated only once. 
Moreover, in the usual case that the number of virtual orbitals (N) greatly exceeds 
the number of occupied orbitals (n), the most expensive noniterative steps will be 
those that scale with n3N 3, while a more expensive n2N  4 step must be carried out in 
solving the CCSD equations 1-21]. Unlike noniterative corrections proposed for 
both CCSD [18] and EOM-CCSD for excited (n-electron) states [22], the proced- 
ure proposed here will not dominate the overall cost of a calculation. This is 
a significant point, and suggests that it is probably wise to evaluate the contribu- 
tion even in routine calculations. 

3 Application of the method 

As a first application of the noniterative correction to EOMIP-CCSD final-state 
energies proposed in this paper, total energies have been calculated for the two 
lowest states of some small prototypical radicals as well as the vertical energy 
separation between them. The purpose of this exploratory study is to assess how 
well the corrected EOMIP-CCSD method (hereafter referred to as EOMIP- 
CCSD*) performs with respect to CCSD and CCSD(T) calculations based on 
unrestricted Hartree-Fock (UHF) reference functions. It should be noted that the 
systems considered in this section are those for which the latter "standard" CC 
methods are expected to work well, and the perturbational arguments used to 
motivate the present formulation are applicable. As the balanced feature of 
EOMIP-CCSD is preserved in EOMIP-CCSD*, the performance of the latter for 
more difficult situations (such as those involving pseudo-Jahn-Teller effects) is 
expected to be at least as good as EOMIP-CCSD. However, problems of this type 
are beyond the scope of the present work, and will be deferred for future study. 
Since a detailed comparison with experimental results is not our objective, a rela- 
tively small double-zeta plus polarization (DZP) basis set [23] has been used in all 
calculations. In addition, the geometries chosen for study are based on represen- 
tative internuclear distances and bond angles rather than structural optimization 
of the electronic ground states of the radicals. 

Results for HOO and CH30, as well as cations of HCN, H z C O  , N 2 are 
presented in Table 1. Total energies for both ground and excited states are 
documented, along with corresponding vertical excitation energies in eV. Two 
trends are apparent from the data. First, excitation energies calculated with 
EOMIP-CCSD* are in uniformly better agreement with the UHF-CCSD and 
UHF-CCSD(T) values. This is satisfying because the latter methods (which are 
exact through third and fourth order in the correlation perturbation, respectively) 
are expected to work well for these systems since no strong configuration effects are 
present. Moreover, since the present application focuses on vertical energy differ- 
ences rather than the shape of potential energy surfaces, problems associated with 
quasidegenerate states of a different symmetry are avoided. 

The total energies calculated with EOMIP-CCSD and EOMIP-CCSD* 
methods merit some discussion. As seen in the table, the EOMIP-CCSD* energy is 
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Table 1. Total electronic energies at the EOMIP-CCSD, EOMIP-CCSD*, UHF- 
CCSD and UHF-CCSD(T) levels for the two lowest electronic states of selected 
radicals. All calculations were performed at the geometries given in the tabular 
footnotes with the DZP basis set of Ref. [23]. Total energies are in hartress; energy 
splittings (vertical excitation energies) in electron volts are also given in the rightmost 
column 

HO~ X2A " A2A ' Splitting 

EOMIP-CCSD - 150.597373 
EOMIP-CCSD* - 150.597711 
UHF-CCSD - 150.589893 
UHF-CCSD(T) - 150.600054 

CH30b 
X2E 

EOMIP-CCSD - 114.777058 

EOMIP-CCSD* - 114.776445 
UHF-CCSD - 114.770867 
UHF-CCSD(T) - 114.777432 

H C N + :  
X2// 

EOMIP-CCSD -- 92.711025 
EOMIP-CCSD* - 92.730074 
UHF-CCSD - 92.723168 
UHF-CCSD(T) - 92.731592 

CH20 +,d 
XZB2 

EOMIP-CCSD - 113.854249 
EOMIP-CCSD* - 113.855014 
UHF-CCSD -- 113.849875 
UHF-CCSD(T) - 113.858179 

NI ,  o 
X2Zg 

EOMIP-CCSD - 108.739671 
EOMIP-CCSD* -- 108.746977 
UHF-CCSD - 108.738740 
UHF-CCSD(T) - 108.754336 

--150.567336 
--150.568634 
- 150.563208 
--150.572156 

A2A1 
-114.622055 
--114.625188 
-114.618591 
- 114.625277 

A2Z 
-92.701210 
-92.707223 
-92.704110 
-92.714557 

A2Bx 

--113.709737 
--113.716591 
-113.712988 
--113.718319 

A2]]u 

--108.675096 
--108.697436 
- 108.689880 
--108.698133 

0.817 
0.791 
0.726 
0.759 

Splitting 
4.218 
4.116 
4.144 
4.140 

Splitting 
0.267 
0.622 
0.519 
0.464 

Splitting 
3.932 
3.767 
3.725 
3.806 

Splitting 
1.757 
1.348 
1.330 
1.529 

r(OH) = 1.0 6, r(OO) = 1.4/~ 0(HOO) = 120 ° 
b r (OH)=  1.0 A, r(CO) = 1.45A, 0(HCO) = 110 ° 
c r(CH) = 1.0 A, r(CN) = 1.2 h 
d r(Cn) = 1.0 A, r(CO) = 1.2 A, 0(HCO) = 120 ° 
° r(NN) = 1.097 A 

s y s t e m a t i c a l l y  b e l o w  t h e  U H F - C C S D  r e s u l t  i n  al l  cases.  A l t h o u g h  t h e  r o o t - m e a n -  
s q u a r e  ( rms )  d e v i a t i o n  b e t w e e n  U H F - C C S D  ene rg i e s  a n d  t h o s e  o b t a i n e d  a t  t h e  
E O M I P - C C S D  a n d  E O M I P - C C S D *  levels  is s i m i l a r  (2.0 a n d  2.3 m i l l i h a r t r e e s ,  
r e spec t ive ly ) ,  t h e  f o r m e r  e x h i b i t  c o n s i d e r a b l y  m o r e  e r r a t i c  b e h a v i o r ,  f a l l ing  as 
m u c h  as  11 m i l l i h a r t r e e s  ( m h )  above (217 s t a t e  o f  H C N )  a n d  7 m h  below (2E s t a t e  of  
t h e  m e t h o x y  r a d i c a l )  t h e  U H F - C C S D  resul ts .  F r o m  th i s  r e l a t i ve ly  s m a l l  se t  o f  t e s t  
cases ,  i t  a p p e a r s  t h a t  a v e r a g e  d i f f e rences  b e t w e e n  ve r t i ca l  i o n i z a t i o n  p o t e n t i a l s  
c a l c u l a t e d  f r o m  U H F - C C S D  e n e r g i e s  a n d  t h o s e  i n f e r r e d  b y  t h e  t w o  E O M I P  
m e t h o d s  wil l  b e  s imi la r .  T h e  o n l y  d i s t i n c t i o n  is t h a t  E O M I P - C C S D *  is l ike ly  t o  



312 J.F. Stanton, J. Gauss 

underestimate systematically UHF-CCSD values, while EOMIP-CCSD results 
would tend to scatter about them. Energy splittings amongst the n-1 electron final 
states may be predicted more reliably with the former method, however, due to its 
apparently more systematic behavior. 

Perhaps most interesting is the rather good agreement between EOMIP- 
CCSD* energies and those calculated at the UHF-CCSD(T) level. The corres- 
ponding rms difference (1.2 mh) is about half that found when EOMIP-CCSD* 
and UHF-CCSD energies are compared; the behavior is again decidedly system- 
atic with UHF-CCSD(T) somewhat below EOMIP-CCSD* for all of the example 
systems. These numerical results underscore the assertion of Nooijen [11], who 
showed that some treatment of connected triple excitations in the (n electron) 
reference state correlation is needed to counterbalance effects introduced by includ- 
ing 3h2p determinants in the description of the final states when these methods are 
used to calculate ionization potentials. The "connected triple excitation effects" 
included in EOMIP-CCSD* are entirely due to 3h2p operators in which none of 
the hole indices corresponds to the orbital that is depopulated in the appropriate 
zeroth-order Koopmans determinant (IK)) that describes the state qualitatively. 
These operators generate determinants that are triply excited with respect to I K )  
with two electrons in orbitals not occupied in 10) and the third in the orbital that is 
occupied in f0) but empty in [K). However, EOMIP-CCSD* does not provide 
a comparable treatment of the other triply excited determinants (those with three 
electrons in orbitals unoccupied in 10)), so it is dangerous to assume that UHF- 
CCSD(T) and EOMIP-CCSD* are complimentary methods. However, such ques- 
tions are of practical importance only to those who would use EOMIP-CCSD* to 
calculate vertical ionization potentials since the issue of how to represent the initial 
state [CCSD vs. CCSD(T)-] is then relevant. However, our interest lies not in this 
area, but rather with properties of the final states and, to a lesser extent, energy 
differences between them. The behavior of the EOMIP-CCSD* energies [which 
appear to be intermediate in quality between UHF-CCSD and UHF-CCSD(T)-] is 
decidedly more systematic than that observed for EOMIP-CCSD. The former 
approach moreover gives doublet ~ doublet excitation energies that are in 
uniformly better agreement with both UHF-CCSD and UHF-CCSD(T) values. 

4 Conclusions 

While further numerical experimentation is clearly needed to establish the relative 
reliabilities of EOMIP-CCSD and EOMIP-CCSD*, the results of the present 
study suggest that the latter method offers at least a modest improvement in the 
description of n-1 electron states. Due to this encouraging performance, it is 
enticing to speculate that similar improvements will be found when EOMIP- 
CCSD* is applied to the study of other properties. To investigate this issue, we are 
presently extending the theory for analytic energy derivative calculation at the 
EOMIP-CCSD level I-5-] to EOMIP-CCSD*. When a program for performing 
EOMIP-CCSD* analytic gradient calculations is available, the method will be 
applied to the demanding problem of characterizing potential energy surfaces of 
radicals and the study of representative chemical reactions involving molecules in 
doublet electronic states. At that time, a clear picture of the merits and limitations 
of the method should emerge. 

To conclude, it should be emphasized that evaluation of the noniterative energy 
correction advocated here does not dominate the cost of the calculation. This 
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feature distinguishes EOMIP-CCSD* from related coupled-cluster approaches 
[such as CCSD(T)], since evaluation of the noniterative correction is rate-limiting 
in all other cases. Provided that the performance of EOMIP-CCSD* for the 
examples studied here is characteristic of what can be expected from the 
method, there is actually little reason not  to include the correction in production 
calculations. 
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